Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis.

نویسندگان

  • Jianhong Hu
  • Melissa G Mitchum
  • Neel Barnaby
  • Belay T Ayele
  • Mikihiro Ogawa
  • Edward Nam
  • Wei-Chu Lai
  • Atsushi Hanada
  • Jose M Alonso
  • Joseph R Ecker
  • Stephen M Swain
  • Shinjiro Yamaguchi
  • Yuji Kamiya
  • Tai-Ping Sun
چکیده

Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter-beta-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana

To elucidate the involvement of gibberellin (GA) in the growth regulation of Arabidopsis roots, effects of shoot-applied GA and GA-biosynthesis inhibitors on the root were examined. Applying GA to the shoot of Arabidopsis slightly enhanced the primary root elongation. Treating shoots with uniconazole, a GA biosynthesis inhibitor, also resulted in enhancement of primary root elongation, while sh...

متن کامل

Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha

Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adu...

متن کامل

Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum

Several dwarf plum genotypes (Prunus salicina L.), due to deficiency of unknown gibberellin (GA) signalling, were identified. A cDNA encoding GA 2-oxidase (PslGA2ox), the major gibberellin catabolic enzyme in plants, was cloned and used to screen the GA-deficient hybrids. This resulted in the identification of a dwarf plum hybrid, designated as DGO24, that exhibits a markedly elevated PslGA2ox ...

متن کامل

Functional characterization of a gibberellin receptor and its application in alfalfa biomass improvement

Bioactive gibberellins (GAs) are essential phytohormones involved in the regulation of many aspects of plant development. GA receptors are crucial in GA signal transduction in plants. The GA receptor GoGID1 promotes plant elongation and improves biomass production when ectopically expressed in tobacco. Here, we discovered that GoGID1 can interact with the DELLA proteins of Arabidopsis in the pr...

متن کامل

AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis.

Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2008